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Abstract

Optical methods represent a powerful tool for contactless characterisation of materials in industrial processes. In particular, in the
microelectronic field great impetus has been given to the on-line measurement of the doping profiles in large scale productions in order
to increase the overall equipment effectiveness. In this framework, we propose a new technique based on optical tomography able to
reconstruct the doping profiles in semiconductor wafers starting from reflected intensity measurements, taken at infrared wavelengths.
Several numerical simulations have shown the effectiveness of the proposed approach. In particular, the reconstruction of typical shallow
doping profiles, generated by a process simulator, has been performed with relatively high accuracy. ©2000 Elsevier Science S.A. All
rights reserved.
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1. Introduction

In the last years a great effort has been devoted to the
development of new materials and process characterisation
techniques [1]. In fact, the measurement of material charac-
teristics provides both a check on the fabrication processes
[2] and a tool to improve the reliability of process simula-
tors as well. In particular, in microelectronics (semiconduc-
tor materials and devices) and optoelectronics (optical fibers
and planar waveguides), where the material properties are
determined by the intentional implant or diffusion of impuri-
ties, the exact control and measurements of doping profiles,
or refractive index variations, is a very crucial problem [3].
Hence, many different methods have been developed to this
purpose. However, the most widely used, mainly in semi-
conductor industries, require the destruction of the sample
under test or the realisation of suitable test structures which
can change the doping profile to be measured. On the other
hand, completely contactless optical techniques have been
recently developed, but they only permit to reconstruct dop-
ing profiles representable by well known analytical functions
[4,5].

In this work we propose a new non-destructive and con-
tactless method for the characterisation of one-dimensional
doping profiles in semiconductor wafers. Our approach re-
lies on optical diffraction tomography, where the complex
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permittivity of a weakly scattering inhomogeneous object,
illuminated by a known wavefield at different wavelengths
and/or different directions, is reconstructed starting from the
measurements of reflected and/or transmitted field.

The proposed technique, starting from infrared spec-
troscopy data, allows to reconstruct one-dimensional pro-
files in semiconductor samples, and could be used for both
ex situ and in situ monitoring of technological process [2].
In our approach, we assume that only the field intensity is
available. Using the integral relations of the electromagnetic
scattering [6], under a linear approximation, and taking
advantage of the linear relationship, which holds true at in-
frared wavelengths, between the free carriers concentration
and the complex permittivity of the semiconductor material,
we relate the field intensity reflected by the sample to the
doping profile [7]. The reconstruction problem is formu-
lated as the minimisation of a proper non-linear functional
representing the error between the measurements of the
reflected intensity, at different frequencies, and the model
data. In our approach the unknown carriers concentration
profile is not described by a ‘parametric’ expression of a
known function [4], but an expansion in a finite series of
basis functions is used. So, no ‘strong’ assumption must
be made on the functional form of the doping profile (e.g.
exponential function, Gaussian function, error function,
etc. ). Furthermore, this particular choice of the data and
unknowns allows us to tackle a quadratic inverse problem
that has already been faced in the literature addressing and
solving the problem of the presence of local minima,
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Fig. 1. The geometry of the problem.

typical of any non-linear inversion [8]. The effectiveness
of this approach is demonstrated by numerically simulating
the measurements.

2. Formulation of the problem

In Fig. 1 is depicted the geometry of the one-dimensional
problem considered: a homogeneous slab, of thicknessL,
with a non-homogenous material embedded. The slab and
the non-homogenous material are characterised by the con-
stitutive parameters{µ0, ε0ε2} and {µ0, ε0εr(z)}, respec-
tively, whereε2 is the relative dielectric permittivity of the
homogeneous slab andεr is the relative dielectric permit-
tivity of the non-homogenous material. The constitutive pa-
rameters of the front and back medium are{µ0, ε0ε1} and
{µ0, ε0ε3}, respectively.µ0 is the magnetic permeability of
the vacuum.

The slab is illuminated by a plane waveEi with the electric
field vector perpendicular to the plane of incidence, at an
angular frequencyω from a fixed angleθ . The total electric
field Er reflected by the sample is related to the dielectric
permittivity εr(z) by Helmholtz scalar wave equation [6]:

∂2Er

∂z2
+ k2

z (z)Er = 0 (1)

with

kz(z) =
√

εr(z)k
2
0 − (k1sin(θ))2 (2)

k0 = ω
√

µ0ε0 = 2π/λ being the wavenumber of the vac-
uum.The unknown dielectric profileεr(z), can be expressed
as the superposition of the dielectric permittivity of the ho-
mogeneous slabε2, and a perturbationχ , called ‘contrast
function’, defined as:

χ(z) =
{

(εr(z) − ε2) z ∈ [0, L]
0 z /∈ [0, L]

(3)

The functionχ (z) represents the new unknown of the prob-
lem. So, in this approach we do not search directly for the
dielectric profile, but only for the variations with respect to
the homogeneous one.

Adding and subtractingk2
z2Er into Eq. (1), where

kz2 =
√

ε2k
2
0 − (k1sin(θ))2,

the Helmholtz equation may be rewritten as:

∂2Er

∂z2
+ k2

z2Er = −k2
0(z)χ(z)Er (4)

This equation permits to relate the reflected field to the per-
turbationχ (z), which appears as a source function on the
right side of Eq. (4).

3. Basic equations

The solutionEr of Eq. (4) represent the field reflected by
the slab at a fixed distancēz, and can be expressed as the
sum of the field reflected by the homogeneous slabE0 and
the field reflected by the perturbationEs, normally called
scattered field [6]:

Er(z̄; ω) = E0(z̄; ω) + Es(z̄; ω) z̄ < 0 (5)

where:

E0(z̄; ω) = r(ω) exp(ikz1z̄) (6)

with [6]:

r(ω) = −R21 + T12R23T21 exp(−i2kz2L)

1 − R21R23 exp(−i2kz2L)
(7)

kz1 = k1cos(θ) (8)

k1 = ω
√

µ0ε1ε0 being the wavenumber of the front medium,
Rnm, Tnm the reflection and transmission coefficients be-
tween the mediumn and the mediumm [6], respectively
(see Fig. 1).

If we assume thatχ represent a weak perturbation respect
to the homogeneous slab,χ(z) � ε2, the scattered field can
be expressed as [6]:

Es(z̄; ω) = k2
0

∫ L

0
G(z̄, z′; ω)χ(z′)Eio(z′; ω) dz′ (9)

G(z̄, z′; ω) is the Green function for̄z < 0, that is the solu-
tion of Eq. (4) when the source term on the right hand-side
is −δ(z̄ − z′), and is expressed by [6]:

G(z̄, z′; ω) = T21h(z′) exp(ikz1z̄)

i2kz2(1 − R21R23 exp(−i2kz2L))
(10)

with

h(z′) = exp(−ikz2z
′) + R23 exp(−i2kz2L) exp(ikz2z

′)
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andEio is the electric field inside the homogeneous slab [6]:

Eio(z′; ω) = T12h(z′)
(1 − R21R23 exp(−i2kz2L))

(11)

This approximation, also called weak scattering approxi-
mation or distorted Born approximation, permits to linearly
relate the scattered field to the dielectric properties of the
inhomogeneous material embedded in the slab.

Starting from the knowledge ofEs at different wave-
lengths and/or different directions of incident field, several
methods have been developed in order to invert Eq. (9) and
reconstruct the functionχ(z) [6,9,10].

4. Semiconductor dielectric function

For a semiconductor material the dielectric permittivity
can be expressed as the sum of the latticeεL and free-carriers
contributionsεC:

ε(z; ω) = εL(ω) + εC(z; ω) (12)

The lattice contribution can be expressed as a function of
radiation wavelength (in micron) according to the dispersion
formula [11]:

εL(λ) = A + B

λ2
+ Cλ2

1

(λ2 − λ2
1)

(13)

where, if silicon is concerned,λ1 = 1.1071mm while
A= 11.6858,B= 9.39816× 10−1 mm2 and C= 8.10461×
10−3.

The free carriers contribution is due to the intraband tran-
sitions and, when the substrate and the doping material are
of the same type, it can be represented, according to the
Drude–Lorenz model [12], by:

εC(z; ω) =
[

−ω2
P(z)

ω2 + ω2
T(z)

+ i
ω2

P(z)ωT(z)

ω(ω2 + ω2
T(z))

]
(14)

where the plasma frequencyωp(z) and the scattering fre-
quencyωT(z) of the free carriers are related to the semicon-
ductor parameters by the following expressions [12]:

ω2
P(z) = N(z)e2

ε0m∗ (15)

ωT(z) = e

m∗µ(z)
(16)

ebeing the electron charge,m∗ the effective mass,µ the free
carrier mobility,N(z) the free carrier concentration profile.
Eq. (16) shows that the scattering frequency depends on
the doping profile through the carrier mobility. Normally
this effect is neglected (see [4,5]), however we shall take it
into account by using an iterative procedure as explained in
Section 5.

Substituting Eq. (15) into Eq. (14) we obtain:

εC(z; ω) = C(z; ω)N(z) (17)

where:

C(z; ω) = e2

ε0m∗

[
−1

ω2 + ω2
T(z)

+ iωT (z)

ω(ω2 + ω2
T(z))

]
(18)

Eq. (17) shows that the free carrier contributionεC is
linearly related to the carrier concentration.

Taking into account Eqs. (12) and (17) we can write:

ε(z; ω) = εL(ω) + C(z; ω)N(z) (19)

Indicating withNsub the doping concentration of the sub-
strate and with1N the variation of the carrier concentration
induced by the doping profile, we can write:

N(z) = Nsub+ 1N(z) (20)

Finally, the dielectric permittivity of the non-homogeneous
material can be written as:

εr(z; ω) = ε2(z; ω) + χ(z; ω) (21)

where

ε2(z; ω) = εL(ω) + C(z; ω)Nsub (22)

χ(z; ω) = C(z; ω)1N(z) (23)

5. Reconstruction of doping profiles

The scattering field in the semiconductor case can be ob-
tained by plugging Eq. (23) into Eq. (9):

Es(z̄; ω) = k2
0

∫ L

0
G(z̄, z′; ω)C(z′; ω)1N(z′)Eio(z′; ω) dz′

(24)

This equation shows that, in the distorted Born approx-
imation, the scattered field is linearly related to the carriers
concentration. Starting from the knowledge of the reflected
field, both in amplitude and in phase, we could retrieve the
doping profiles using the algorithms that have been devel-
oped to reconstruct dielectric profiles [6,9,10]. However,
the phase measurements, at optical wavelength, require
methods that are quite complicated from an experimen-
tal point of view. In order to overcome this problem, we
have developed a new method that requires only intensity
(square amplitude) measurements at infrared wavelengths.
These measurements can be easily performed using a FTIR
spectrometer. The uniqueness of solution, in this case, can
be ensured relying on the analytical properties of the to-
tal field. In fact, the addition of the reflected fieldE0 to
the scattered oneEs, satisfying the condition|Es | < |E0|,
removes the ambiguities in the solution [13].
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Finally, we have to invert the relation:

I (ω) = F(1N; ω) (25)

where

F(1N; ω) =
∣∣∣∣E0(z̄; ω) + k2

0

∫ L

0
G(z̄, z′; ω)C(z′; ω)

× 1N(z′)Eio(z′; ω) dz′
∣∣∣∣
2

(26)

andI is the intensity of the total reflected field measured, at
a fixed distancēz, at different wavelengths.

Although the uniqueness of the solution is ensured, since
the measured values are noise affected, the problem is
ill-posed [6]; therefore the problem of inverting Eq. (25) is,
faced by looking for a generalised solution defined as the
global minimum of the following non-linear functional:

8 =
V∑

i=1

(Fi(1N) − Ii)
2

Ii

(27)

where the data are represented by the field intensity samples
taken atV different wavelengths, while the unknown is the
carrier concentration profile.

In order to perform the minimisation procedure the carrier
concentration is expressed as the superposition of a finite
numberM of basis functions, defined in the regionD = [0,d]
(d≤ L) where significant variation of the concentration
occurs:

1N(z′) =
M∑

q=0

aqPq

(
z′ − d/2

d/2

)
z′ ∈ D (28)

wherePq is the Legendre polynomial of orderq. Substituting
Eq. (28) into Eq. (26) we have:

F(a; ω) =
∣∣∣∣∣∣E0(ω) +

M∑
q=0

aqγq(ω)

∣∣∣∣∣∣
2

(29)

wherea = (a0, a1, . . . , aM) and

γq(ω) = k2
0

∫ d

0
G(z̄, z′; ω)Eio(z′; ω)C(z′; ω)Pq

×
(

z′ − d/2

d/2

)
dz′ (30)

Eq. (27) becomes:

8 =
V∑

i=1

(Fi(a) − Ii)
2

Ii

(31)

So the problem of reconstructing the doping profile
has been reduced to that of finding the coefficientsa =
(a0, a1, . . . , aM) that minimise the functional8. The
minimisation of the function (31) is performed using a

quasi-Newton algorithm; in particular, the Broyden–Flecher–
Goldfarb–Shanno (BFGS) method has been chosen [14].

Using a base function expansion we have two definite ad-
vantages. First, we do not fix a priori the functional form of
the doping profile using a model function (e.g. the classical
solutions of the diffusion problems). This allows to recon-
struct the actual profile, regardless of its similarity with the
expected one. In fact, it has been observed that the actual
doping profile not always agree to the model function [4].
Second, together with the choice of the field intensity as
data, it permits to avoid the local minima problem. In fact,
the use of a basis functions expansion let us to tackle with
a quartic functional8 whose behaviour, in terms of local
minima, has been extensively examined and sufficient con-
ditions, ensuring their absence, have been established [8].

As stressed in the above section, in order to take into
account for the mobility dependence on the carriers con-
centration we use an iterative minimisation procedure. In
the first step the mobility is a constant equal to the value
relative to the substrate; the recovered doping profile is then
used to calculate a mobility profile useful to perform the
second step. The procedure is stopped when a negligible
variation in the recovered profile is achieved.

6. Numerical results

In order to test the validity of the method, several recon-
structions of doping profiles have been performed starting
from synthetic data. The simulations have been performed
referring to silicon wafers of thicknessL = 300mm and with
a specific doping profile, by calculatingV= 84 uniformly
spaced values of the reflected intensity in the spectral range
330–8700 cm−1 (1.15÷ 30mm). The front and back media
are supposed to be the air soε1 = ε3 = 1, while the incident
angle isθ = 5◦. In the reconstruction procedure the minimi-
sation always starts from a flat profile (1N= 0). The relia-
bility of the reconstruction is evaluated by introducing the
normalised mean square error defined by:

err = ‖N − Nr‖
‖N‖ (32)

whereN andNr are the exact and the reconstructed profile,
respectively.

The numberM of the basic functions used in the re-
construction procedure can be ‘guessed’ relying on the a
priori information about technological process employed
to realise the profile under analysis. Anyway, in order to
take into account the unavoidable differences between the
expected profile and the actual one we have developed a
‘step-by-step’ procedure. We increase the number of the ba-
sic functions starting with a low value ofM and increasing
it at each step until the difference between two successive
solutions is negligible.

The ability of the technique to reconstruct the doping
distribution after different processes has been tested using



L. Zeni et al. / Chemical Engineering Journal 77 (2000) 137–142 141

Fig. 2. Case #1: actual (solid line) and reconstructed (dotted line) profiles.
The reconstruction error is 0.7%.

a one-dimensional process simulator in order to obtain the
doping profiles. In particular, two cases have been consid-
ered. First, we have analysed a high-energy ion implantation
followed by a short time drive-in (case #1), second a low
energy ion implantation followed by a long time drive-in
(case #2) has been considered. The reconstruction results
are depicted in Figs. 2 and 3, respectively.

In the first cased= 1.3mm is used while the number of
basic functions has been initially fixed toM = 12, relying
on the information relative to the functional form of the
profile. Then this number has been increased step-by-step up
to M = 16, when no further reduction of the reconstruction
error occurs. The result of the minimisation is depicted in
Fig. 2, in this case the reconstruction error is err= 0.7%.

In the second cased= 1.3mm is used while the procedure
ends withM = 11 and err= 0.6% is achieved (see Fig. 3).

The above results clearly show the ability of our method
to deal with typical doping profiles. The validity of this
approach is essentially limited by the validity range of the

Fig. 3. Case #2: actual (solid line) and reconstructed (dotted line) profiles.
The reconstruction error is 0.6%.

Born approximation. In fact, it has been shown that the latter
poses limitations both on the doping level and on the spatial
extension of the doping profile to be reconstructed [15]. The
maximum resolution achievable is related to the smallest
wavelength used in the reconstruction and to the dielectric
permittivity of the homogeneous slabε2. In particular, ifλmin
is the smallest wavelength, from the analysis performed in
[16], it can be estimated that the spatial resolution is about
λmin/(2

√
ε2), as it is also expected by the Rayleigh limit.

7. Conclusions

We have presented and numerically tested a new method
useful for the non-destructive characterisation of doping pro-
files in semiconductor materials. This approach, differently
from previous ones where phase measurements are required,
needs only the measurements of the intensity reflected by
the sample at different wavelengths, which can be easily
performed by a FTIR spectrometer. Furthermore, the use of
a basis expansion, in order to express the unknown profile,
permits to avoid to choose a priori its analytical expression.
The numerical simulations performed on shallow doping
profiles show the good accuracy of the method.

Work is in progress to modify the present approach in
order to overcome some limitations of the distorted Born
approximation [17].
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